啦啦号文案-美文集结地

您现在的位置是:首页 > 总结 > 正文

总结

指数运算法则公式

2023-03-17 06:57:48总结
指数函数运算法则公式:(1)a^m+n=a^m∙a^n;(2)a^mn=(a^m)^n;(3)a^1/n=^n√a;(4)a^m-n=a^m/a^n。指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指……

指数函数运算法则公式:(1)a^m+n=a^m∙a^n;(2)a^mn=(a^m)^n;(3)a^1/n=^n√a;(4)a^m-n=a^m/a^n。

指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

指数函数是非奇非偶函数。指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。


2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。


3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。


4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。


基本的函数的导数:


1、y=a^x,y'=a^xlna。


2、y=c(c为常数),y'=0。


3、y=x^n,y'=nx^(n-1)。


4、y=e^x,y'=e^x。


5、y=logax(a为底数,x为真数),y'=1/x*lna。


6、y=lnx,y'=1/x。


7、y=sinx,y'=cosx。


8、y=cosx,y'=-sinx。


9、y=tanx,y'=1/cos^2x。

扩展资料:


记忆口诀


有理数的指数幂,运算法则要记住。


指数加减底不变,同底数幂相乘除。


指数相乘底不变,幂的乘方要清楚。


积商乘方原指数,换底乘方再乘除。


非零数的零次幂,常值为1不糊涂。


负整数的指数幂,指数转正求倒数。


看到分数指数幂,想到底数必非负。


乘方指数是分子,根指数要当分母。